Depth Estimation Using Monocular and Stereo Cues

نویسندگان

  • Ashutosh Saxena
  • Jamie Schulte
  • Andrew Y. Ng
چکیده

Depth estimation in computer vision and robotics is most commonly done via stereo vision (stereopsis), in which images from two cameras are used to triangulate and estimate distances. However, there are also numerous monocular visual cues— such as texture variations and gradients, defocus, color/haze, etc.—that have heretofore been little exploited in such systems. Some of these cues apply even in regions without texture, where stereo would work poorly. In this paper, we apply a Markov Random Field (MRF) learning algorithm to capture some of these monocular cues, and incorporate them into a stereo system. We show that by adding monocular cues to stereo (triangulation) ones, we obtain significantly more accurate depth estimates than is possible using either monocular or stereo cues alone. This holds true for a large variety of environments, including both indoor environments and unstructured outdoor environments containing trees/forests, buildings, etc. Our approach is general, and applies to incorporating monocular cues together with any off-the-shelf stereo system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Monocular and Stereo Depth Cues

A lot of work has been done extracting depth from image sequences, and relatively less has been done using only single images. Very little has been done merging these together. This paper describes the fusing of depth estimation from two images, with monocular cues. The paper will provide an overview of the stereo algorithm, and the details of fusing the stereo range data with monocular image f...

متن کامل

Combining Monocular Geometric Cues with Traditional Stereo Cues for Consumer Camera Stereo

This paper presents a framework for considering both stereo cues and structural priors to obtain a geometrically representative depth map from a narrow baseline stereo pair. We use stereo pairs captured with a consumer stereo camera and observe that traditional depth estimation using stereo matching techniques encounters difficulties related to the narrow baseline relative to the depth of the s...

متن کامل

Combining Monocular Geometric Cues with Traditional Stereo Cues for Consumer Camera Stereo

This paper presents an algorithm for considering both stereo cues and structural priors to obtain a geometrically representative depth map from a narrow baseline stereo pair. We use stereo pairs captured with a consumer stereo camera and observe that traditional depth estimation using stereo matching techniques encounters difficulties related to the narrow baseline relative to the depth of the ...

متن کامل

Formulation Of A N-Degree Polynomial For Depth Estimation using a Single Image

..............................................................................................................................6 Literature Survey.................................................................................................................7 Chapter 1: Conventional Methods.................................................................................10 1.1 Monocular Cues.......

متن کامل

Unsupervised Learning of Stereo Vision with Monocular Cues

We demonstrate unsupervised learning of a stereo vision model involving monocular depth cues (shape from texture cues). We formulate a conditional probability model defining the probability of the right image given the left. This conditional model does not model a probability distribution over images. Maximizing conditional liklihood rather than joint liklihood is similar using a CRF (Condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007